PowTech Non-isolated Buck LED driver with APFC

GENERAL DESCRIPTION

The PT4238E/PT4240E is a high precision non-isolated and constant current buck type driver with active PFC, targeted at high brightness LED lighting applications.

The PT4238E/PT4240E integrates a high voltage power supply circuit, so it achieves fast start up, and the system reduces count of component.

The PT4238E/PT4240E works in guasi-resonant mode for low EMI, and low heat emission by reducing power MOSFET switching losses. Besides, excellent line, load and temperature regulation is achieved without external compensation.

The PT4238E/PT4240E includes LED string open/short circuit protection and over temperature regulation. Built-in soft start greatly reduces the inrush current during startup.

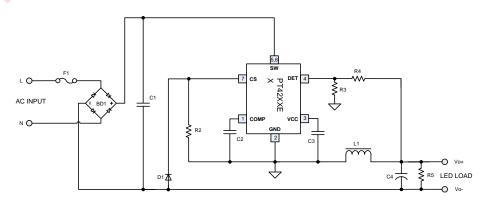
The PT4238E/PT4240E is available in a SOP-7 package.

ORDERING INFORMATION

FEATURES

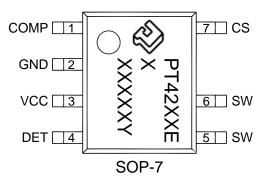
- High voltage power supply circuit
- Integrated High voltage Power MOSFET
- Constant Current Consistency (+/-3%)
- Tight Line/Load/Temperature Regulation without External Compensation
- High PFC (>0.9)
- High Efficiency (up to 95%)
- Quasi-Resonant Mode Operation
- Built-In Soft Start
- Cycle by Cycle Current Limit
- LED String Open/Short Circuit Protection
- **Over Temperature Protection**

APPLICATIONS


- Retrofit Bulb/Tube/Par LED Lamps
- Downlight, Recess, Panel LED Lighting

PACKAGE	ORDERING PART NUMBER	TRANSPORT MEDIA	MARKING
SOP-7	PT4238EESOG-AY	4000/Tape and Reel	AY AY XXXXXXX
SOP-7	PT4240EESOG-C	4000/Tape and Reel	PT4240E C xxxxxX

Note:



YPICAL APPLICATION CIRCUIT

PIN ASSIGNMENT

PIN DESCRIPTIONS

PIN No. SOP-7	PIN NAMES	DESCRIPTION
1	COMP	Compensation pin for constant current control loop.
2	GND	Ground.
3	VCC	Power supply pin for all internal circuit.
4	DET	Voltage sense pin to detect zero current of the inductor, and the voltage of the LED string.
5,6	SW	High voltage startup and Power MOSFET Drain side.
7	CS	Current sense Pin.

ABSOLUTE MAXIMUM RATINGS (note1)

SYMBOL	PARAMETER	VALUE	UNIT
V_{SW}	SW Pin Voltage Range(PT4238EAY)	-0.3~500	V
	SW Pin Voltage Range(PT4240EC)	-0.3~650	V
I _{VCC_MAX}	Maximum VCC Clamp Current	10	mA
V _{I/O}	Other I/O PIN Input Voltage	-0.3~5	V
TJ	Junction Temperature Range	-40~150	Ĉ
T _{STG}	Storage Temperature Range	-55~150	°C
Θ _{JA}	SOP-7	145	СМ
HBM	ESD Capability, HBM(note2)	2	kV

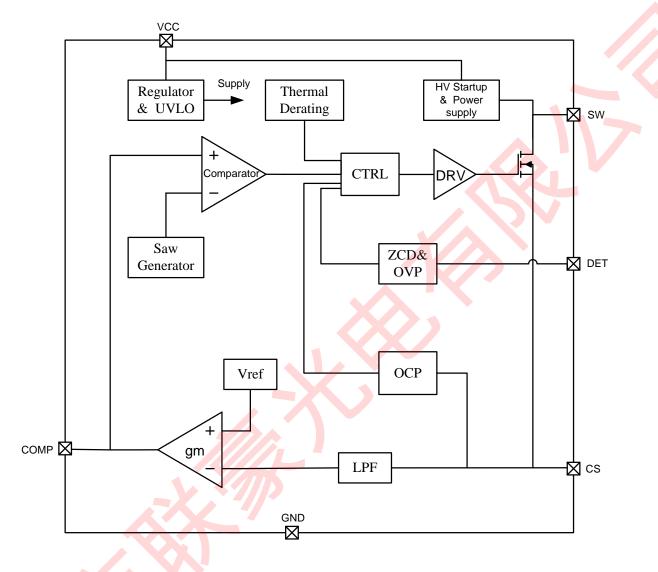
Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Electrical Characteristics state DC and AC electrical specifications under particular test conditions which guarantee specific performance limits. This assumes that the device is within the Operating Range. Specifications are not guaranteed for parameters where no limit is given, however, the typical value is a good indication of device performance.

Note 2: Human body model, 100pF discharged through a $1.5k\Omega$ resistor.

3

ELECTRICAL CHARACTERISTICS

(T_A=25°C, VCC=10V, unless specified otherwise)


SYMBOL	PARAMETER	TEST CONDITION	MIN	ТҮР	MAX	UNIT
Supply Voltage & Current (VCC)						
V _{VCC_OP}	VCC Operating Voltage	VCC Rising		10.0		V
$V_{\text{VCC_OFF}}$	VCC Minimum Operating Voltage	VCC Falling		7.0		v
V_{VCC_CLAMP}	VCC Clamp Voltage			12	KL.	V
I _{VCC_OPER}	VCC Supply Current	F _{GATE_AVG} =5.7KHz		150		μA
Error Amplifie	r		X			
V_{REF}	Constant Current Control Reference Voltage		0.194	0.2	0.206	V
V_{COMP_RANG}	COMP Operation Range		0.8		3.0	V
Current Sense	9				L	
T _{LEB}	Leading Edge Blanking Time	-X.		300		ns
V_{CS_CLAMP}	Current Sense Clamp Voltage		1.35	1.5	1.65	V
DET Pin Sens	e					
V _{ZCD}	Zero Current Detect Threshold Voltage	Falling edge		0		V
V_{ZCD_H}	Zero Current Detect Hysteretic Voltage			0.2		V
V _{DET_OVP}	DET Over-Voltage Threshold		1.8	2.0	2.2	V
T _{ON_MAX}	Maximum On Time			25		μS
T _{OFF_MIN}	Minimum Off Time			1.5		μS
T _{OFF_MAX}	Maximum Off Time			175		μS
F _{SW_MAX}	Maximum Operation Switching Frequency		95	120	145	KHz
Power MOSFET						
Rocou	Drain-to-Source	PT4238EAY		5.0		Ω
R _{DSON}	On-Resistance	PT4240EC		2.0		Ω
BV _{DS}	Drain-to-Source	PT4238EAY	500			V

SYMBOL	PARAMETER	TEST CONDITION	MIN	TYP	МАХ	UNIT
	Breakdown Voltage (I _D =250uA)	PT4240EC	650			V
HV JFET						
I _{JFET}	JFET current	DRAIN of JFET to GND 20V		10		mA
I _{DSS}	JFET shutdown leakage current			40		uA
Thermal Protection						
T _{REG}	Thermal Regulation Temperature			155		°C

SIMPLIFIED BLOCK DIAGRAM

FUNCTIONAL DESCRIPTION

The PT4238E/PT4240E is a universal AC input buck, constant current driver with active PFC targeted at high brightness LED lighting applications.

Start-up

The PT4238E/PT4240E integrates a high voltage power supply circuit, so the VCC pin voltage gets charged quickly by the SW pin. Once the VCC pin voltage exceeds the threshold of $V_{VCC OP}$, the driver starts to deliver driving pulses to power MOSFET.

Since the ultra-narrow bandwidth of PFC control loop, it suffers from a long turn-on time and large output overshoot. PT4238E/PT4240E uses a dynamic loop bandwidth technique to achieve overshoot-free. The control loop regulates to its steady-state with fast speed.

Output Current Setting and line regulation compensation

Output current can be set by the following equation.

Non-isolated Buck LED driver with APFC

$$I_{OUT} = \frac{V_{ref}}{R_{CS}}$$

Where,

Vref:Internal reference voltage, fixed at 200mV. R_{CS} :The current sensing resistor.

Valley Turn-on Mode

PT4238E/PT4240E works in quasi-resonant mode to reduce the power MOSFET switching loss. After inductor current falls to zero, LC(inductor L1 and Cds of power MOSFET) resonant occurs at the drain of power MOSFET. Power MOSFET will switch on at the first bottom point of the drain side of the power MOSFET.

Cycle-by-cycle Current Limit

The current limit circuit senses the current in the power MOSFET via CS pin. When CS pin voltage exceeds the internal threshold V_{CS_CLAMP} , the power MOSFET turns off for the rest of that cycle.

Output Open Circuit Protection

Output open protection circuitry will shut down the IC when the feedback pin DET voltage is above 2V for 3 consecutive switching cycles. In this condition, the driver enters hiccup mode operation.

The hiccup behavior will continue until the output open circuit condition is removed.

The ratio of DET upper resistor to lower resistor can be set by the following equation.

$$\frac{R_{DET_L}}{R_{DET_L} + R_{DET_H}} = \frac{2.0}{V_{OVP}}$$

Where,

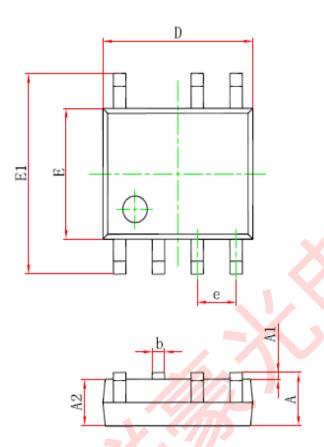
 R_{DET_L} : The lower resistor of the feedback network R_{DET_H} : The upper resistor of the feedback network V_{OVP} : Output over voltage setting point.

Output Short Circuit Protection

During the output short circuit period, the power MOSFET will switch at frequency of about 5.7 kHz to reduce short-circuit state power dissipation.

Over Temperature Protection

The thermal shutdown circuitry senses the junction temperature of the die. If the junction temperature exceeds T_{REG} , the device will reduce output current to avoid system cause to damage.



 \mathbf{c}

PACKAGE INFORMATION

SOP-7

SOP7 PACKAGE OUTLINE DIMENSIONS

Symbol	Millimeters		Inches		
	Min	Max	Min	Max	
A	1.350	1.750	0.053	0.069	
A1	0.100	0.250	0.004	0.010	
A2	1.250	1.650	0.049	0.065	
b	0.330	0.510	0.013	0.020	
С	0.170	0.250	0.007	0.010	
D	4.700	5.100	0.185	0.201	
E	3.800	4.000	0.150	0.157	
E1	5.800	6.200	0.228	0.244	
е	1.270(BSC)		0.050(BSC)		
L	0.400	1.270	0.016	0.050	
θ	0°	8°	0°	8°	

PowTech Non-isolated Buck LED driver with APFC

IMPORTANT NOTICE

POWTWCH (SHANGHAI) CO., LTD. reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services and to discontinue any product or service. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to POWTECH's terms and conditions of sale supplied at the time of order acknowledgment.

POWTECH warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in POWTECH's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent POWTECH deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

POWTECH assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using POWTECH components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

No POWTECH components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those POWTECH components which POWTECH has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of POWTECH components which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use

Unless POWTECH has specifically designated certain components which meet ISO/TS16949 requirements, mainly for automotive use, POWTECH will not be responsible for any failure of such components to meet such requirements.